Moore FSM: Output has some delay, but well defined and synchronized with clock
Depends only on state
Mealy FSM: Instantaneous, but grey area after new clock cycle
Depends on state and input
Example
$y_0^{n+1} = (x^n + y_1^n)\cdot \overline{y_0^n}$
$y_1^{n+1} = x^n$
$z^n = (x^n+y_1^n)\cdot\overline{y_o^n}$
Transition Table
States | $(y_1y_0)^{n}$ | $x^{n}=0$ | $x^n=1$ | $x^{n}=0$ | $x^n=1$ |
---|---|---|---|---|---|
a | 00 | 00 | 11 | 0 | 1 |
b | 01 | 00 | 10 | 0 | 0 |
c | 11 | 00 | 10 | 0 | 0 |
d | 10 | 01 | 11 | 1 | 1 |
$(y_1y_0)^{n+1}$ | $(y_1y_0)^{n+1}$ | $z^n$ | $z^n$ |
State Table
$q^n$ | $x^n=0$ | $x^n=1$ |
---|---|---|
a | a, 0 | c, 1 |
b | a, 0 | d, 0 |
c | a, 0 | d, 0 |
d | b, 1 | c, 1 |
$q^{n+1}=(y_1y_0)$