If $\{ N(s), s \leq 0 \}$ is a Poisson process with rate $\lambda$,
Property 1: $N(0) = 0$
Property 2: $N(s+t) - N(s) \sim \mathrm{Poisson}(\lambda t)$
Property 3: $N(s)$ ****has independent increments
Let $N(s)$ with rate $\lambda$.
N(s)
|--------|--------|-------|---|--------|--------------------...
T1 T2 T3 T4 T5 t
N1(s) (with probability p, like a coin toss)
|--------|----------------|------------|--------------------...
T1 T3 T5 t
N2(s) (with probability 1-p)
|-----------------|-----------|-----------------------------...
T2 T4 t
$N_1(s)$ has rate $\lambda p$ and $N_2(s)$ has rate $\lambda(1-p)$.
Note that $N_1(s)$ is independent from $N_2(s)$.
Let $N_1(s)$ and $N_2(s)$ is independent with rates $\lambda_1$ and $\lambda_2$. $N(s) = N_1(s) + N_2(s)$ is also a Poisson process with rate $\lambda_1 + \lambda_2$.