Inhomogeneous Poisson Processes

Proof:

Are the ISIs independent? Calculate: $\mathrm{Pr}\{t_2 > s | t_1 = t\} = \mathrm{Pr}\{N(t+s) - N(t) = 0\}$

Let $\mu(t) = \int^t_0 \lambda (r) \mathrm{d}r$

$\mu(t+s) - \mu(t) = \int_t^{t+s} \lambda(r) \mathrm{d}r$

$\mathrm{Pr}\{t_2 > s | t_1 = t\} = \mathrm{Pr}\{N(t+s) - N(t) = 0\}$

$= \dfrac{(\mu(t+s) - \mu(t))^0 e^{-(\mu(t+s) - \mu(t))}}{0!}$

$=e^{-(\mu(t+s) - \mu(t))}$

Since $\mathrm{Pr}\{t_2 > s| t_1 = t\}$ is a function of $t$, then the distribution of $t_2$ depends on $t$ (the value $t_1$ takes on), so $t_1 \not\!\perp\!\!\!\perp t_2$.

Generating Poisson Processes

Generating Inhomogenous Poisson Processes